Theoretical perspectives in QCD

Frank Petriello

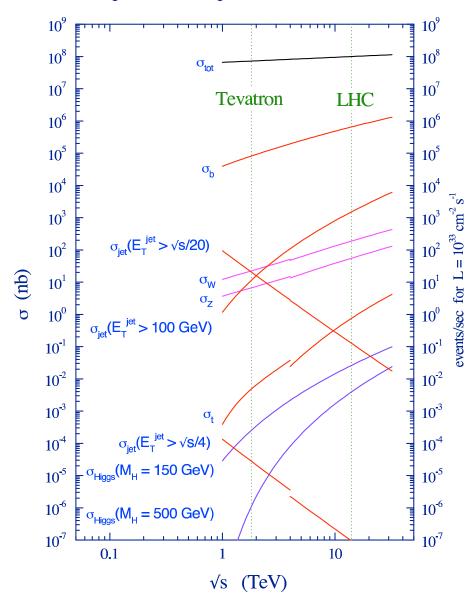
Hadron Collider Physics Symposium May 2006

Outline

Motivation

- Limitations of parton shower Monte Carlos
- Importance of perturbative QCD to verify and improve Monte Carlo tools
- Merging LO with parton showers
- Status of NLO calculations
 - $gg \rightarrow H \rightarrow WW$ at the LHC: NLO for discovery
 - Interplay between experimental cuts and higher order calculations
 - Automating NLO calculations
 - Merging NLO with parton showers

Status of NNLO calculations

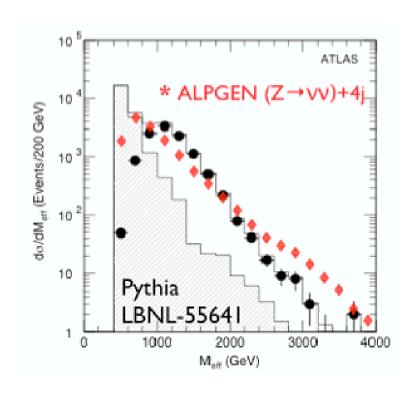

- Parton distribution functions
- W acceptances at NNLO with spin correlations
- Higgs physics at NNLO: reweighting event generators and Higgs couplings

Physics at the LHC

- **■** LHC turns on in ≈ 1 year!
- Excellent discovery reach at $\sqrt{s} = 14$ TeV:
 - SUSY: squark/gluino reach of 2.5-3 TeV
 - Z', graviton reach of 5-6 TeV
- Enormous event rates at $10 \, \mathrm{fb}^{-1}/\mathrm{year}$:
 - $W \rightarrow e\nu$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $t\bar{t}$: 10^7 events
 - Higgs ($m_H = 700 \text{ GeV}$): 10^4 events
- ⇒ Both an opportunity (precision, low systematics) and a challenge (backgrounds)

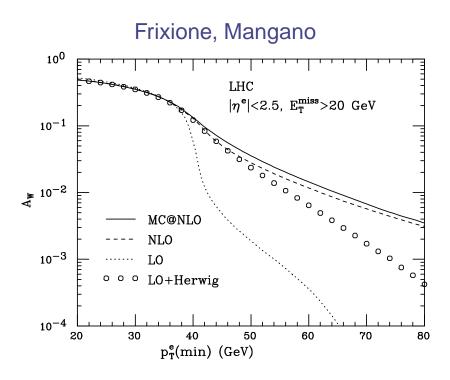
Signal excavation

proton - (anti)proton cross sections


- Not all discovery channels produce dramatic signatures!
- Need theoretical control of distribution shapes, backgrounds, uncertainties, . . .
- Measurements of new physics parameters needs theory
- Incorrect theory leads to:
 - ullet Tevatron high E_T jets
 - Tevatron *B*-meson production
 - NuTeV $\sin^2 \theta_W$
 - Brookhaven g-2 of the muon

QCD tools for hadron colliders

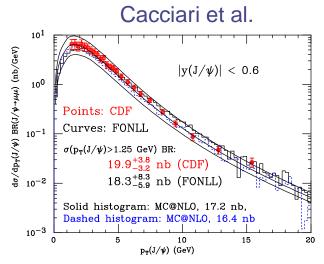
- Develop, test QCD tools at HERA, Tevatron
- What are the possible approaches?
 - Fixed-order pQCD: systematic expansion in α_s (LO, NLO, NⁿLO)
 - Quantify, reduce error by studying $\mu_{R,F}$ variation at each order
 - Analytic resummation: treat large logarithms to all orders in α_s $\Rightarrow \ln(m_H^2/p_T^2)$, $\ln(1-m_H^2/\hat{s})$
 - Parton shower Monte Carlos (HERWIG, PYTHIA)
 - Generate many partons in collinear (leading log) approximation
 - Shower is universal; codes contain many processes
- ▶ HERWIG, PYTHIA: many partons allows hadronization, detector simulation; can access most physics processes; leading log resummation of dangerous kinematic regions
 ⇒ default for many studies


How well do they do?

SUSY searches and PYTHIA

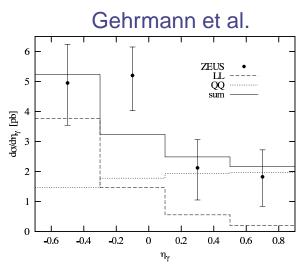
- $m{M}_{
 m eff} = \sum_j p_\perp^j + E_\perp^{
 m miss}$: standard SUSY discriminator
- ALPGEN (Mangano et al.): exact LO matrix elements, correct hard emissions
- PYTHIA: extra jets generated via parton shower
- ⇒ PYTHIA does not describe multiple hard emissions well

W production and HERWIG



- ullet $rac{A_W[NLO]}{A_W[HERWIG]}pprox 2-10$ for $p_{T,min}^e \geq 50$ GeV
- ullet Extra hard emission at NLO generates all events for $p_{T,min}^e > M_W/2$
- \Rightarrow HERWIG misses important effects for the W acceptance

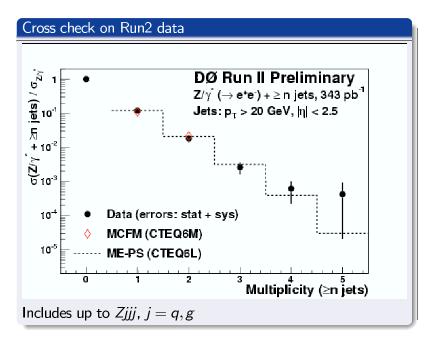
Moral


Moral: need systematic, controlled QCD expansion

- pQCD expansion in α_s augmented with necessary resummation
- Verify and improve Monte Carlo tools

B production at Tevatron

- Run I: data/theory ratio was 2-4
- Use consistent fragmentation extraction
- Resummation of p_{\perp}/m_b , new pdfs



Isolated photons at ZEUS

- Data/PYTHIA=2.3, Data/HERWIG=7.9
- Both have incorrect kinematics
- ullet PYTHIA γ from lepton, HERWIG γ from quark
- LO QCD gets rate and shapes correct

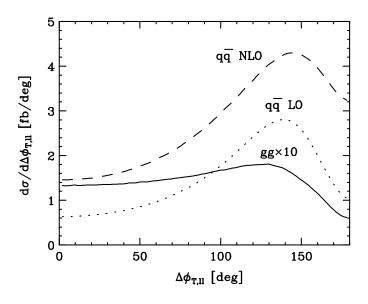
Merging LO with parton showers

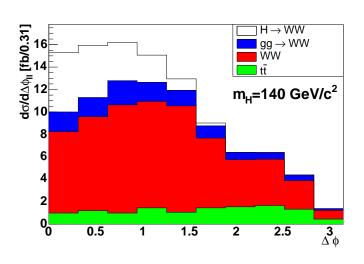
- An N jet event: N-m jets from parton shower, m from MEs, $m=0,\ldots,N$
- MEs describe hard/large angle emissions, PS desribe soft/collinear
- CKKW (Catani, Krauss, Kuhn, Webber): prescription to cover entire phase-space correctly

Mrenna

- Generate m < N hard jets; get m probability, kinematics from MEs
- Parton shower from this configuration;
 veto hard emissions
- Depends on parameter defining "hard" jet
- SHERPA: includes ME generator
- HERWIG, PYTHIA: use external tree-level generator, e.g. MADGRAPH and apply CKKW (Mrenna, Richardson)

⇒ Describes Run II data well


Status of NLO calculations


- ▶ Parton-level results available for all $2 \rightarrow 2$ and some $2 \rightarrow 3$ processes:
 - AYLEN/EMILIA (de Florian et al.): $pp \rightarrow (W, Z) + (W, Z, \gamma)$
 - DIPHOX (Aurenche et al.): $pp \rightarrow \gamma j, \gamma \gamma, \gamma^* p \rightarrow \gamma j$
 - HQQB (Dawson et al.): $pp \to t\bar{t}H, b\bar{b}H$
 - MCFM (Campbell, Ellis): $pp o (W,Z) + (0,1,2)\,j, \; (W,Z) + b\bar{b}, V_1V_2, \ldots$
 - NLOJET++ (Nagy): $pp \rightarrow (2,3)\,j,\,ep \rightarrow (3,4)\,j,\,\gamma^*p \rightarrow (2,3)\,j$
 - VBFNLO (Figy et al.): $pp \rightarrow (W, Z, H) + 2j$
 - **.** . . .
- Reduced theoretical uncertainty from $\mu_{R,F}$ dependence
- New qualitative effects, e.g., gluon pdf, p_T generation

Higgs discovery at higher orders

NLO important for discovery

- Important Higgs mode for $140 < m_H < 180$ GeV is $gg \to H \to WW \to ll\nu\nu$
- Cannot reconstruct mass peak; rely upon kinematic distributions

- NLO $pp \to WW$ background correction large: $\sigma_{NLO}/\sigma_{LO} > 1.5$
- Loop-induced $gg \to WW$ formally NNLO; enhanced by $\Delta \phi_{T,ll} < 45^o$
- ⇒ further increases background by 30% (Binoth et al., Dührssen et al.)

NLO wishlist

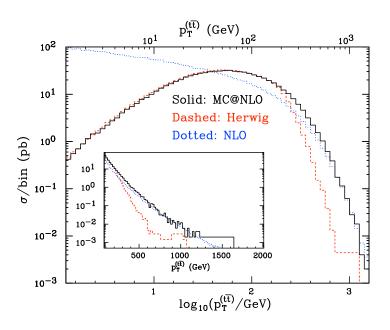
Theoretical status						
Single boson	Diboson	Triboson	Heavy flavour			
$W + \leq 2j$	$WW + \leq 0j$	$WWW + \leq 3j$	$t\bar{t} + \leq 0j$			
$W + b\bar{b} + \le 0j$	$\overline{WW} + b\overline{b} + \leq 3j$	$WWW + b\bar{b} + \le 3j$	$t\bar{t} + \gamma + \leq 2j$			
$W + c\bar{c} + \le 0j$	$WW + c\bar{c} + \le 3j$	$WWW + \gamma\gamma + \le 3j$	$t\bar{t} + W + \le 2j$			
$Z + \leq 2j$	$ZZ + \leq 0j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \le 2j$			
$Z + b\bar{b} + \le 0j$	$ZZ + b\bar{b} + \le 3j$	$WZZ + \leq 3j$	$t\overline{t} + H + \le 0j$			
$Z + c\bar{c} + \le 0j$	$ZZ + c\bar{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\bar{b} + \leq 0j$			
$\gamma + \leq 1j$	$\gamma\gamma + \leq 1j$		$b\bar{b} + \leq 0j$			
$\begin{array}{c} \gamma + b\overline{b} + \leq 3j \\ \gamma + c\overline{c} + \leq 3j \end{array}$	$\gamma \gamma + b\overline{b} + \leq 3j$ $\gamma \gamma + c\overline{c} + \leq 3j$					
$\gamma + cc + \geq 0$	$WZ + \leq 0j$					
	$WZ + b\bar{b} + \leq 3j$					
	$WZ + c\bar{c} + \leq 3j$ $W\gamma + \leq 0j$					
	$Z\gamma + \leq 0j$					
	2 1 \(\sigma\)					

Campbell

■ Want flexibile, automated approach ⇒ many backgrounds, possible new states

Automating NLO calculations

- Sticking point: loops for $n = 5, 6, \ldots$ external legs
 - Numerics complicated by soft, collinear singularities
 - Reduction to master integrals induces fictitious singularities


Progress:

- Expand reduction coefficients around fictitious singularities (Denner, Dittmaier)
- \Rightarrow actually used to obtain EW corrections to $e^+e^- \rightarrow 4$ fermions
- Semi-numerical (Ellis, Giele, Zanderighi): \Rightarrow applying to Hjj
- Twistor-inpsired (Berger, Bern, Dixon, Kosower; Britto, Cachazo, Feng; . . .)
- → lots of activity and new ideas!

Combining NLO with parton showers

Fixed order, parton showers complimentary

- PS: universal, leading log resummation, hadronization
- FO: correct rates, hard emissions, reduced and quantifiable errors
- ⇒ want the advantages of both approaches!

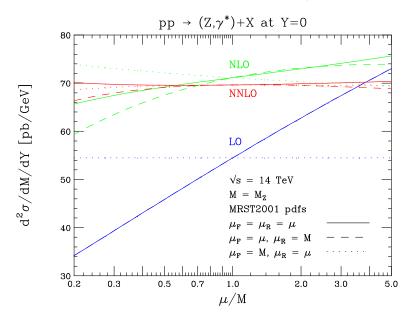
- MC@NLO (Frixione, Webber)
- Smoothly matches soft/collinear (MC) and hard (NLO) regions
- Unweighted events, NLO normalization
- ullet Available for $W,Z,H,\gamma^*,bar{b},tar{t},WW,ZZ,WZ,tb$

Activity! (Nagy, Soper; Giele, Kosower, Skands; Bauer, Schwartz)

Status of NNLO calculations

When is NNLO needed?

- When corrections are large (H production, fixed target energies)
- For benchmark measurements, where expected errors are small $(W, Z, t\bar{t})$ production)


What is known?

- Several inclusive $2 \to 1$ processes (W, Z, H production) (van Neerven, Harlander, Kilgore, Anastasiou, Melnikov, Ravindran, Smith)
- A few "semi-inclusive" $2 \to 1$ distributions (W, Z rapidity distributions) (Anastasiou, Dixon, Melnikov, FP)
- Fully differential $2 \to 1$ result $(pp \to H, W, Z + X)$ (Anastasiou, Melnikov, FP)
- DGLAP splitting kernels (Moch, Vermaseran, Vogt)
- Various approximate results (soft approximations)

→ Lots of activity and new ideas!

Drell-Yan rapidity distributions

ullet $\frac{d\sigma}{dY}\sim f_q(x_1)f_{\bar q}(x_2),\, x_{1,2}=\sqrt{\frac{M^2}{s}}e^{\pm Y}\Rightarrow {\sf need}\ Y {\sf to}\ {\sf fix}\ {\sf pdf}\ {\sf kinematics}$

Anastasiou, Dixon, Melnikov, FP

- Scale variation <1% after NNLO corrections at high Q^2
- Fixed-target indicates importance of NNLO corrections
- Sensitivity to different pdf extractions (Alekhin, MRST)
- DGLAP kernels of Moch et al., allow complete NNLO extraction of pdfs with DIS, DY

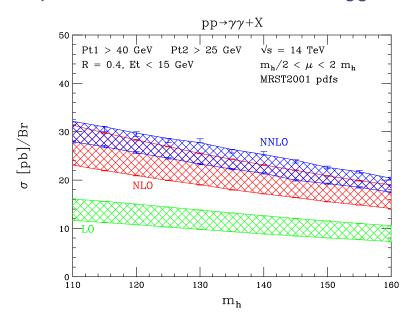
PDF improvements

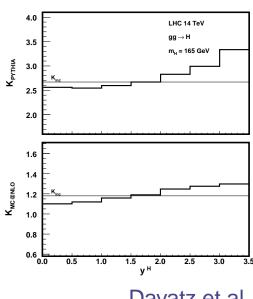
- Currently NNLO extractions by Alekhin, MRST
 - Alekhin uses only DIS, MRST uses DIS, DY, jets
 - Current PDF uncertainties in W, Z from Alekhin (MRST similar):

```
TEV: \delta \sigma_W \approx 1.5\%, \delta \sigma_Z \approx 1.3\%
LHC: \delta \sigma_W \approx 2.7\%, \delta \sigma_Z \approx 2.6\%
```

- However: MRST, Alekhin consistent when MRST restricts to same DIS sets
- ⇒ "benchmark" MRST not consistent with the global MRST fit
- Inconsistent data? Poor initial parameterization? Non-universal power corrections?
- Prospects: (HERA-LHC workshop, hep-ph/0511119)
 - HERA II: add jet data, projected $\approx 10\%$ improvement in sea quarks, high-x gluon
 - Neural network PDF fitting: remove bias from inital parameterization (del Debbio et al.)
 - NNLO description of both DIS, DY in fits?

Luminosity monitoring


- Monitor luminosity with W production (Dittmar et al.)
 - Reduce luminosity uncertainty to 1-5% level
 - Tevatron analysis as proof of principle?
 - Fully differential NNLO calculation with spin correlations complete (Melnikov, FP)
 - ⇒ allows percent-level predictions for acceptance
 - Cut 1: $p_T^e > 20$ GeV, $|\eta^e| < 2.5$, $\not\!E_T > 20$ GeV (LHC) Cut 2: $p_T^e > 40$ GeV, $|\eta^e| < 2.5$, $\not\!E_T > 20$ GeV (LHC)


LHC	A(MC@NLO)	$\frac{\sigma_{MC@NLO}}{\sigma_{NLO}}$	A(NNLO)	$\frac{\sigma_{NNLO}}{\sigma_{NLO}}$
Cut 1	0.485	1.02	0.492	0.983
Cut 2	0.133	1.03	0.155	1.21

- Large dependence of NNLO corrections on cuts, MC@NLO off by 20%
- Plausibility: LO+parton shower (HERWIG) underestimates NLO
- ⇒ extra hard emission at NNLO important!

Exclusive Higgs production

- Fully differential NNLO Higgs production calculation complete (Anastasiou, Melnikov, FP)
 - Allows predictions with all experimental cuts included
 - Inclusive K-factor is $\approx 2 \Rightarrow$ do cuts change this?
 - Important for measurements of Higgs couplings

Davatz et al.

- $\gamma\gamma$: effect of cuts $\approx 5\%$; WW: jet-veto is $\approx 20\%$ effect!
- Reweight MC output with differential K-factor to include kinematic dependences

Higgs coupling extractions

Analyses of Higgs couplings use relation

$$\sigma(H) \times BR(H \to xx) = \frac{\sigma(H)^{TH}}{\Gamma_p^{TH}} \cdot \frac{\Gamma_p \Gamma_x}{\Gamma}$$

- \Rightarrow calculate and assign theoretical uncertainty to σ/Γ , extract $\Gamma_p\Gamma_x/\Gamma \Rightarrow$ new states in loops should drop out from theory ratio, just QCD+PDFs
- Studies assign $\pm 20\%$ uncertainty to σ/Γ for $gg \to H$ production mode (Duhrssen et al.)

$$\Gamma \sim \alpha(\mu_R)^2 C_1(\mu_R)^2 \{1 + \alpha(\mu_R)X_1 + \ldots\}$$

 $\sigma \sim \alpha(\mu_R)^2 C_1(\mu_R)^2 \{1 + \alpha(\mu_R)Y_1 + \ldots\}$

- Scale variation correlated, large μ_R variation cancels; $\Delta(\sigma/\Gamma)=\pm 5\%$
- Recent work:
 - N³LO soft+virtual corrections to $\sigma_{gg\to H}$ (Moch, Vermaseran, Vogt)
 - N^3LO corrections to Γ_{gg} (Baikov, Chetyrkin)
 - $\Delta \sigma$: $\pm 10\% \to \pm 3 4\%$; $\Delta \Gamma$: $\pm 5\% \to \pm 1 2\%$
- Need inclusion of these effects in Higgs coupling studies!

Conclusions

- Need more work on QCD tools for LHC physics!
- Highlights:
 - Test of ME+PS merging on Tevatron Z+jets
 - pp o WW background shows importance of NLO signal, background calculations \Rightarrow also interplay between higher orders and experimental cuts
 - Theory progress on automated NLO coming!
 - Many new techniques for NⁿLO results for benchmark measurements
 - DGLAP kernels+Drell-Yan rapidity allows consistent NNLO PDF extraction
 ⇒ new MRST fit, HERA jet data to shed light on discrepancies
 - ▶ Have differential W, Z result with spin correlations for acceptances
 ⇒ Tevatron luminosity analysis?
- Intellectually vibrant, active fi eld
 - Progress from new ideas, not just turning the crank
 - Lots of new results in "old" physics!